Relative risk of breast cancer for highest versus lowest category of dietary fish intake

Study	Relative risk (95% Cl)	Weight (%)	Relative risk (95% CI)
Tissue biomarker			
Vatten ¹⁷		3	0.72 (0.42 to 1.24)
Chajes ¹⁸		2	0.67 (0.38 to 1.19)
Pala ⁴⁴		2	0.51 (0.25 to 1.04)
Saadatian-Elahi premenopausal ⁴		2	0.93 (0.51 to 1.69)
Saadatian-Elahi postmenopausal ⁴		2	0.79 (0.45 to 1.36)
Chajes ²³		3	1.35 (0.86 to 2.13)
Witt ²⁶		4	0.96 (0.64 to 1.43)
Takata ²⁴		5	0.81 (0.57 to 1.15)
Subtotal: P=0.4, I ² =8%	-	23	0.86 (0.71 to 1.03)
Diet			
Voorrips ³⁷		8	0.99 (0.79 to 1.24)
Cho ²⁰		6	1.05 (0.80 to 1.38)
Gago-Dominguez premenopausal ¹²		2	0.90 (0.49 to 1.65)
Gago-Dominguez postmenopausal ¹²		5	0.68 (0.47 to 0.97)
Folsom ²¹	- <u>i</u>	9	0.91 (0.77 to 1.08)
Wakai ⁵		3	0.50 (0.30 to 0.85)
Thiebaut ²⁵		10	0.94 (0.80 to 1.10)
Patterson ⁴³		8	0.76 (0.61 to 0.95)
Murff ²⁷		5	0.74 (0.52 to 1.05)
Sczaniecka ³⁸		9	0.69 (0.57 to 0.82)
Park ⁸	-	12	1.02 (0.94 to 1.09)
Subtotal: P=0.001, I ² =67%	+	77	0.85 (0.76 to 0.96)
Overall: P=0.003, I ² =54%	0.5 1 2	100	0.86 (0.78 to 0.94)

Chart Date 5/22/2019 ©2019 GrassrootsHealth Zheng et al, BMJ, 2013.

